Order Book Queue Hawkes-Markovian Modeling
Philip Protter,
Qianfan Wu and
Shihao Yang
Papers from arXiv.org
Abstract:
This article presents a Hawkes process model with Markovian baseline intensities for high-frequency order book data modeling. We classify intraday order book trading events into a range of categories based on their order types and the price changes after their arrivals. To capture the stimulating effects between multiple types of order book events, we use the multivariate Hawkes process to model the self- and mutually-exciting event arrivals. We also integrate a Markovian baseline intensity into the event arrival dynamic, by including the impacts of order book liquidity state and time factor to the baseline intensity. A regression-based non-parametric estimation procedure is adopted to estimate the model parameters in our Hawkes+Markovian model. To eliminate redundant model parameters, LASSO regularization is incorporated in the estimation procedure. Besides, model selection method based on Akaike Information Criteria is applied to evaluate the effect of each part of the proposed model. An implementation example based on real LOB data is provided. Through the example, we study the empirical shapes of Hawkes excitement functions, the effects of liquidity state as well as time factors, the LASSO variable selection, and the explanatory power of Hawkes and Markovian elements to the dynamics of the order book.
Date: 2021-07, Revised 2022-01
New Economics Papers: this item is included in nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2107.09629 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.09629
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().