EconPapers    
Economics at your fingertips  
 

Feature importance recap and stacking models for forex price prediction

Yunze Li, Yanan Xie, Chen Yu, Fangxing Yu, Bo Jiang and Matloob Khushi

Papers from arXiv.org

Abstract: Forex trading is the largest market in terms of qutantitative trading. Traditionally, traders refer to technical analysis based on the historical data to make decisions and trade. With the development of artificial intelligent, deep learning plays a more and more important role in forex forecasting. How to use deep learning models to predict future price is the primary purpose of most researchers. Such prediction not only helps investors and traders make decisions, but also can be used for auto-trading system. In this article, we have proposed a novel approach of feature selection called 'feature importance recap' which combines the feature importance score from tree-based model with the performance of deep learning model. A stacking model is also developed to further improve the performance. Our results shows that proper feature selection approach could significantly improve the model performance, and for financial data, some features have high importance score in many models. The results of stacking model indicate that combining the predictions of some models and feed into a neural network can further improve the performance.

Date: 2021-07
New Economics Papers: this item is included in nep-big and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2107.14092 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.14092

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2107.14092