Partial Identification and Inference for Conditional Distributions of Treatment Effects
Sungwon Lee
Papers from arXiv.org
Abstract:
This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.
Date: 2021-08, Revised 2023-11
New Economics Papers: this item is included in nep-ecm and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2108.00723 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.00723
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().