Calibrating the Nelson-Siegel-Svensson Model by Genetic Algorithm
Asif Lakhany,
Andrej Pintar and
Amber Zhang
Papers from arXiv.org
Abstract:
Accurately fitting the term structure of interest rates is critical to central banks and other market participants. The Nelson-Siegel and Nelson-Siegel-Svensson models are probably the best-known models for this purpose due to their intuitive appeal and simple representation. However, this simplicity comes at a price. The difficulty in calibrating these models is twofold. Firstly, the objective function being minimized during the calibration procedure is nonlinear and has multiple local optima. Secondly, there is strong co-dependence among the model parameters. As a result, their estimated values behave erratically over time. To avoid these problems, we apply a heuristic optimization method, specifically the Genetic Algorithm approach, and show that it is able to construct reliable interest rate curves and stable model parameters over time, regardless of the shape of the curves.
Date: 2021-08
New Economics Papers: this item is included in nep-cmp and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2108.01760 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.01760
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).