Optimal consumption with loss aversion and reference to past spending maximum
Xun Li,
Xiang Yu and
Qinyi Zhang
Papers from arXiv.org
Abstract:
This paper studies an optimal consumption problem for a loss-averse agent with reference to past consumption maximum. To account for loss aversion on relative consumption, an S-shaped utility is adopted that measures the difference between the non-negative consumption rate and a fraction of the historical spending peak. We consider the concave envelope of the utility with respect to consumption, allowing us to focus on an auxiliary HJB variational inequality on the strength of concavification principle and dynamic programming arguments. By applying the dual transform and smooth-fit conditions, the auxiliary HJB variational inequality is solved in piecewise closed-form and some thresholds of the wealth variable are obtained. The optimal consumption and investment control can be derived in the piecewise feedback form. The rigorous verification proofs on optimality and concavification principle are provided. Some numerical sensitivity analysis and financial implications are also presented.
Date: 2021-08, Revised 2024-03
New Economics Papers: this item is included in nep-isf and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2108.02648 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.02648
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().