Sparse Temporal Disaggregation
Luke Mosley,
Idris Eckley and
Alex Gibberd
Papers from arXiv.org
Abstract:
Temporal disaggregation is a method commonly used in official statistics to enable high-frequency estimates of key economic indicators, such as GDP. Traditionally, such methods have relied on only a couple of high-frequency indicator series to produce estimates. However, the prevalence of large, and increasing, volumes of administrative and alternative data-sources motivates the need for such methods to be adapted for high-dimensional settings. In this article, we propose a novel sparse temporal-disaggregation procedure and contrast this with the classical Chow-Lin method. We demonstrate the performance of our proposed method through simulation study, highlighting various advantages realised. We also explore its application to disaggregation of UK gross domestic product data, demonstrating the method's ability to operate when the number of potential indicators is greater than the number of low-frequency observations.
Date: 2021-08, Revised 2022-10
New Economics Papers: this item is included in nep-ets and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2108.05783 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.05783
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().