EconPapers    
Economics at your fingertips  
 

G3M Impermanent Loss Dynamics

Nassib Boueri

Papers from arXiv.org

Abstract: Geometric Mean Market Makers (G3M) such as Uniswap, Sushiswap or Balancer are key building blocks of the nascent Decentralised Finance system. We establish non-arbitrage bounds for the wealth process of such Automated Market Makers in the presence of transaction fees and highlight the dynamic of their so-called Impermanent Losses, which are incurred due to negative convexity and essentially void the benefits of portfolio diversification within G3Ms. We then turn to empirical data to establish if transaction fee income has historically been high enough to offset Impermanent Losses and allow G3M investments to outperform their continually rebalanced constant-mix portfolio counterparts. It appears that the median liquidity pool had a net nil ROI when taking Impermanent Losses into account. The cross-sectional dispersion of ROI has however been high and the pool net ROI ranking has been significantly autocorrelated for several weeks. This suggests that G3M pools are not yet efficiently arbitraged as agents may access ex-ante knowledge of which G3M pools are likely to be far better investment proposals than others. We finally focus on the UniswapV3 protocol, which introduced the notion of concentrated liquidity ranges and show that such a position can be replicated by leveraging a classic UniswapV2 pool while simultaneously hedging part of the underlying token price exposition. As such, the herein described Impermanent Loss dynamics also apply to UniswapV3 pools.

Date: 2021-08, Revised 2022-06
New Economics Papers: this item is included in nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2108.06593 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.06593

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2108.06593