Density Sharpening: Principles and Applications to Discrete Data Analysis
Subhadeep Mukhopadhyay
Papers from arXiv.org
Abstract:
This article introduces a general statistical modeling principle called "Density Sharpening" and applies it to the analysis of discrete count data. The underlying foundation is based on a new theory of nonparametric approximation and smoothing methods for discrete distributions which play a useful role in explaining and uniting a large class of applied statistical methods. The proposed modeling framework is illustrated using several real applications, from seismology to healthcare to physics.
Date: 2021-08, Revised 2021-08
New Economics Papers: this item is included in nep-ecm and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2108.07372 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.07372
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().