EconPapers    
Economics at your fingertips  
 

Density Sharpening: Principles and Applications to Discrete Data Analysis

Subhadeep Mukhopadhyay

Papers from arXiv.org

Abstract: This article introduces a general statistical modeling principle called "Density Sharpening" and applies it to the analysis of discrete count data. The underlying foundation is based on a new theory of nonparametric approximation and smoothing methods for discrete distributions which play a useful role in explaining and uniting a large class of applied statistical methods. The proposed modeling framework is illustrated using several real applications, from seismology to healthcare to physics.

Date: 2021-08, Revised 2021-08
New Economics Papers: this item is included in nep-ecm and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2108.07372 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.07372

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2108.07372