EconPapers    
Economics at your fingertips  
 

Feasible Weighted Projected Principal Component Analysis for Factor Models with an Application to Bond Risk Premia

Sung Hoon Choi

Papers from arXiv.org

Abstract: I develop a feasible weighted projected principal component (FPPC) analysis for factor models in which observable characteristics partially explain the latent factors. This novel method provides more efficient and accurate estimators than existing methods. To increase estimation efficiency, I take into account both cross-sectional dependence and heteroskedasticity by using a consistent estimator of the inverse error covariance matrix as the weight matrix. To improve accuracy, I employ a projection approach using characteristics because it removes noise components in high-dimensional factor analysis. By using the FPPC method, estimators of the factors and loadings have faster rates of convergence than those of the conventional factor analysis. Moreover, I propose an FPPC-based diffusion index forecasting model. The limiting distribution of the parameter estimates and the rate of convergence for forecast errors are obtained. Using U.S. bond market and macroeconomic data, I demonstrate that the proposed model outperforms models based on conventional principal component estimators. I also show that the proposed model performs well among a large group of machine learning techniques in forecasting excess bond returns.

Date: 2021-08, Revised 2022-05
New Economics Papers: this item is included in nep-big, nep-ecm and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2108.10250 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2108.10250

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2108.10250