Economics at your fingertips  

Controlled Measure-Valued Martingales: a Viscosity Solution Approach

Alexander M. G. Cox, Sigrid K\"allblad, Martin Larsson and Sara Svaluto-Ferro

Papers from

Abstract: We consider a class of stochastic control problems where the state process is a probability measure-valued process satisfying an additional martingale condition on its dynamics, called measure-valued martingales (MVMs). We establish the `classical' results of stochastic control for these problems: specifically, we prove that the value function for the problem can be characterised as the unique solution to the Hamilton-Jacobi-Bellman equation in the sense of viscosity solutions. In order to prove this result, we exploit structural properties of the MVM processes. Our results also include an appropriate version of It\^o's lemma for controlled MVMs. We also show how problems of this type arise in a number of applications, including model-independent derivatives pricing, the optimal Skorokhod embedding problem, and two player games with asymmetric information.

Date: 2021-08, Revised 2022-08
New Economics Papers: this item is included in nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2022-08-08
Handle: RePEc:arx:papers:2109.00064