Auctions and Peer Prediction for Academic Peer Review
Siddarth Srinivasan and
Jamie Morgenstern
Papers from arXiv.org
Abstract:
Peer reviewed publications are considered the gold standard in certifying and disseminating ideas that a research community considers valuable. However, we identify two major drawbacks of the current system: (1) the overwhelming demand for reviewers due to a large volume of submissions, and (2) the lack of incentives for reviewers to participate and expend the necessary effort to provide high-quality reviews. In this work, we adopt a mechanism-design approach to propose improvements to the peer review process, tying together the paper submission and review processes and simultaneously incentivizing high-quality submissions and reviews. In the submission stage, authors participate in a VCG auction for review slots by submitting their papers along with a bid that represents their expected value for having their paper reviewed. For the reviewing stage, we propose a novel peer prediction mechanism (H-DIPP) building on recent work in the information elicitation literature, which incentivizes participating reviewers to provide honest and effortful reviews. The revenue raised in the submission stage auction is used to pay reviewers based on the quality of their reviews in the reviewing stage.
Date: 2021-08, Revised 2023-05
New Economics Papers: this item is included in nep-des, nep-isf and nep-sog
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2109.00923 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2109.00923
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().