Economics at your fingertips  

Implicit Copulas: An Overview

Michael Stanley Smith

Papers from

Abstract: Implicit copulas are the most common copula choice for modeling dependence in high dimensions. This broad class of copulas is introduced and surveyed, including elliptical copulas, skew $t$ copulas, factor copulas, time series copulas and regression copulas. The common auxiliary representation of implicit copulas is outlined, and how this makes them both scalable and tractable for statistical modeling. Issues such as parameter identification, extended likelihoods for discrete or mixed data, parsimony in high dimensions, and simulation from the copula model are considered. Bayesian approaches to estimate the copula parameters, and predict from an implicit copula model, are outlined. Particular attention is given to implicit copula processes constructed from time series and regression models, which is at the forefront of current research. Two econometric applications -- one from macroeconomic time series and the other from financial asset pricing -- illustrate the advantages of implicit copula models.

Date: 2021-09
New Economics Papers: this item is included in nep-dcm, nep-ecm and nep-isf
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2021-09-29
Handle: RePEc:arx:papers:2109.04718