EconPapers    
Economics at your fingertips  
 

Nonparametric Estimation of Truncated Conditional Expectation Functions

Tomasz Olma

Papers from arXiv.org

Abstract: Truncated conditional expectation functions are objects of interest in a wide range of economic applications, including income inequality measurement, financial risk management, and impact evaluation. They typically involve truncating the outcome variable above or below certain quantiles of its conditional distribution. In this paper, based on local linear methods, a novel, two-stage, nonparametric estimator of such functions is proposed. In this estimation problem, the conditional quantile function is a nuisance parameter that has to be estimated in the first stage. The proposed estimator is insensitive to the first-stage estimation error owing to the use of a Neyman-orthogonal moment in the second stage. This construction ensures that inference methods developed for the standard nonparametric regression can be readily adapted to conduct inference on truncated conditional expectations. As an extension, estimation with an estimated truncation quantile level is considered. The proposed estimator is applied in two empirical settings: sharp regression discontinuity designs with a manipulated running variable and randomized experiments with sample selection.

Date: 2021-09
New Economics Papers: this item is included in nep-isf and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/2109.06150 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2109.06150

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-27
Handle: RePEc:arx:papers:2109.06150