EconPapers    
Economics at your fingertips  
 

Pricing multi-asset derivatives by finite difference method on a quantum computer

Koichi Miyamoto and Kenji Kubo

Papers from arXiv.org

Abstract: Following the recent great advance of quantum computing technology, there are growing interests in its applications to industries, including finance. In this paper, we focus on derivative pricing based on solving the Black-Scholes partial differential equation by finite difference method (FDM), which is a suitable approach for some types of derivatives but suffers from the {\it curse of dimensionality}, that is, exponential growth of complexity in the case of multiple underlying assets. We propose a quantum algorithm for FDM-based pricing of multi-asset derivative with exponential speedup with respect to dimensionality compared with classical algorithms. The proposed algorithm utilizes the quantum algorithm for solving differential equations, which is based on quantum linear system algorithms. Addressing the specific issue in derivative pricing, that is, extracting the derivative price for the present underlying asset prices from the output state of the quantum algorithm, we present the whole of the calculation process and estimate its complexity. We believe that the proposed method opens the new possibility of accurate and high-speed derivative pricing by quantum computers.

Date: 2021-09
New Economics Papers: this item is included in nep-cwa
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2109.12896 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2109.12896

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2109.12896