Identification and Estimation in a Time-Varying Endogenous Random Coefficient Panel Data Model
Ming Li
Papers from arXiv.org
Abstract:
This paper proposes a correlated random coefficient linear panel data model, where regressors can be correlated with time-varying and individual-specific random coefficients through both a fixed effect and a time-varying random shock. I develop a new panel data-based identification method to identify the average partial effect and the local average response function. The identification strategy employs a sufficient statistic to control for the fixed effect and a conditional control variable for the random shock. Conditional on these two controls, the residual variation in the regressors is driven solely by the exogenous instrumental variables, and thus can be exploited to identify the parameters of interest. The constructive identification analysis leads to three-step series estimators, for which I establish rates of convergence and asymptotic normality. To illustrate the method, I estimate a heterogeneous Cobb-Douglas production function for manufacturing firms in China, finding substantial variations in output elasticities across firms.
Date: 2021-10, Revised 2024-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2110.00982 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.00982
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().