Beware the Gini Index! A New Inequality Measure
Sabiou Inoua
Papers from arXiv.org
Abstract:
The Gini index underestimates inequality for heavy-tailed distributions: for example, a Pareto distribution with exponent 1.5 (which has infinite variance) has the same Gini index as any exponential distribution (a mere 0.5). This is because the Gini index is relatively robust to extreme observations: while a statistic's robustness to extremes is desirable for data potentially distorted by outliers, it is misleading for heavy-tailed distributions, which inherently exhibit extremes. We propose an alternative inequality index: the variance normalized by the second moment. This ratio is more stable (hence more reliable) for large samples from an infinite-variance distribution than the Gini index paradoxically. Moreover, the new index satisfies the normative axioms of inequality measurement; notably, it is decomposable into inequality within and between subgroups, unlike the Gini index.
Date: 2021-10
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2110.01741 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.01741
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().