Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach
K. S. Naik
Papers from arXiv.org
Abstract:
Since the 1990s, there have been significant advances in the technology space and the e-Commerce area, leading to an exponential increase in demand for cashless payment solutions. This has led to increased demand for credit cards, bringing along with it the possibility of higher credit defaults and hence higher delinquency rates, over a period of time. The purpose of this research paper is to build a contemporary credit scoring model to forecast credit defaults for unsecured lending (credit cards), by employing machine learning techniques. As much of the customer payments data available to lenders, for forecasting Credit defaults, is imbalanced (skewed), on account of a limited subset of default instances, this poses a challenge for predictive modelling. In this research, this challenge is addressed by deploying Synthetic Minority Oversampling Technique (SMOTE), a proven technique to iron out such imbalances, from a given dataset. On running the research dataset through seven different machine learning models, the results indicate that the Light Gradient Boosting Machine (LGBM) Classifier model outperforms the other six classification techniques. Thus, our research indicates that the LGBM classifier model is better equipped to deliver higher learning speeds, better efficiencies and manage larger data volumes. We expect that deployment of this model will enable better and timely prediction of credit defaults for decision-makers in commercial lending institutions and banks.
Date: 2021-10
New Economics Papers: this item is included in nep-ban, nep-big, nep-cmp, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2110.02206 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.02206
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().