EconPapers    
Economics at your fingertips  
 

Can an AI agent hit a moving target?

Rui and Shi
Additional contact information
Rui: Aruhan

Papers from arXiv.org

Abstract: I model the belief formation and decision making processes of economic agents during a monetary policy regime change (an acceleration in the money supply) with a deep reinforcement learning algorithm in the AI literature. I show that when the money supply accelerates, the learning agents only adjust their actions, which include consumption and demand for real balance, after gathering learning experience for many periods. This delayed adjustments leads to low returns during transition periods. Once they start adjusting to the new environment, their welfare improves. Their changes in beliefs and actions lead to temporary inflation volatility. I also show that, 1. the AI agents who explores their environment more adapt to the policy regime change quicker, which leads to welfare improvements and less inflation volatility, and 2. the AI agents who have experienced a structural change adjust their beliefs and behaviours quicker than an inexperienced learning agent.

Date: 2021-10, Revised 2022-10
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2110.02474 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.02474

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2110.02474