EconPapers    
Economics at your fingertips  
 

$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap

Pengzhou Wu and Kenji Fukumizu

Papers from arXiv.org

Abstract: As an important problem in causal inference, we discuss the identification and estimation of treatment effects (TEs) under limited overlap; that is, when subjects with certain features belong to a single treatment group. We use a latent variable to model a prognostic score which is widely used in biostatistics and sufficient for TEs; i.e., we build a generative prognostic model. We prove that the latent variable recovers a prognostic score, and the model identifies individualized treatment effects. The model is then learned as \beta-Intact-VAE--a new type of variational autoencoder (VAE). We derive the TE error bounds that enable representations balanced for treatment groups conditioned on individualized features. The proposed method is compared with recent methods using (semi-)synthetic datasets.

Date: 2021-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2110.05225 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.05225

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2110.05225