General Compound Hawkes Processes for Mid-Price Prediction
Myles Sjogren and
Timothy DeLise
Additional contact information
Myles Sjogren: University of Calgary
Timothy DeLise: Universit\'e de Montr\'eal
Papers from arXiv.org
Abstract:
High frequency financial data is burdened by a level of randomness that is unavoidable and obfuscates the task of modelling. This idea is reflected in the intraday evolution of limit orders book data for many financial assets and suggests several justifications for the use of stochastic models. For instance, the arbitrary distribution of inter arrival times and the subsequent dependence structure between consecutive book events. This has lead to the development of many stochastic models for the dynamics of limit order books. In this paper we look to examine the adaptability of one family of such models, the General Compound Hawkes Process (GCHP) models, to new data and new tasks. We further focus on the prediction problem for the mid-price within a limit order book and the practical applications of these stochastic models, which is the main contribution of this paper. To this end we examine the use of the GCHP for predicting the direction and volatility of futures and stock data and discuss possible extensions of the model to help improve its predictive capabilities.
Date: 2021-10
New Economics Papers: this item is included in nep-mst and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2110.07075 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.07075
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().