Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials
Haoge Chang,
Joel Middleton and
P. M. Aronow
Papers from arXiv.org
Abstract:
In an influential critique of empirical practice, Freedman (2008) showed that the linear regression estimator was biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator with and without treatment-by-covariate interactions. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator, implying that the asymptotic gains from adjustment can be attained without introducing any risk of bias. Taken together with results from Lin (2013), our results show that Freedman's theoretical arguments against the use of regression adjustment can be completely resolved with minor modifications to practice.
Date: 2021-10, Revised 2021-10
New Economics Papers: this item is included in nep-ecm, nep-exp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2110.08425 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.08425
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().