Mean-Variance Portfolio Selection in Contagious Markets
Yang Shen and
Bin Zou
Papers from arXiv.org
Abstract:
We consider a mean-variance portfolio selection problem in a financial market with contagion risk. The risky assets follow a jump-diffusion model, in which jumps are driven by a multivariate Hawkes process with mutual-excitation effect. The mutual-excitation feature of the Hawkes process captures the contagion risk in the sense that each price jump of an asset increases the likelihood of future jumps not only in the same asset but also in other assets. We apply the stochastic maximum principle, backward stochastic differential equation theory, and linear-quadratic control technique to solve the problem and obtain the efficient strategy and efficient frontier in semi-closed form, subject to a non-local partial differential equation. Numerical examples are provided to illustrate our results.
Date: 2021-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2110.09417 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.09417
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().