EconPapers    
Economics at your fingertips  
 

Deep Calibration of Interest Rates Model

Mohamed Ben Alaya, Ahmed Kebaier and Djibril Sarr

Papers from arXiv.org

Abstract: For any financial institution, it is essential to understand the behavior of interest rates. Despite the growing use of Deep Learning, for many reasons (expertise, ease of use, etc.), classic rate models such as CIR and the Gaussian family are still widely used. In this paper, we propose to calibrate the five parameters of the G2++ model using Neural Networks. Our first model is a Fully Connected Neural Network and is trained on covariances and correlations of Zero-Coupon and Forward rates. We show that covariances are more suited to the problem than correlations due to the effects of the unfeasible backpropagation phenomenon, which we analyze in this paper. The second model is a Convolutional Neural Network trained on Zero-Coupon rates with no further transformation. Our numerical tests show that our calibration based on deep learning outperforms the classic calibration method used as a benchmark. Additionally, our Deep Calibration approach is designed to be systematic. To illustrate this feature, we applied it to calibrate the popular CIR intensity model.

Date: 2021-10, Revised 2024-09
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2110.15133 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2110.15133

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2110.15133