EconPapers    
Economics at your fingertips  
 

Artificial Intelligence, Surveillance, and Big Data

David Karpa, Torben Klarl and Michael Rochlitz (michael.rochlitz@gmail.com)

Papers from arXiv.org

Abstract: The most important resource to improve technologies in the field of artificial intelligence is data. Two types of policies are crucial in this respect: privacy and data-sharing regulations, and the use of surveillance technologies for policing. Both types of policies vary substantially across countries and political regimes. In this chapter, we examine how authoritarian and democratic political institutions can influence the quality of research in artificial intelligence, and the availability of large-scale datasets to improve and train deep learning algorithms. We focus mainly on the Chinese case, and find that -- ceteris paribus -- authoritarian political institutions continue to have a negative effect on innovation. They can, however, have a positive effect on research in deep learning, via the availability of large-scale datasets that have been obtained through government surveillance. We propose a research agenda to study which of the two effects might dominate in a race for leadership in artificial intelligence between countries with different political institutions, such as the United States and China.

Date: 2021-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2111.00992 Latest version (application/pdf)

Related works:
Working Paper: Artificial Intelligence, Surveillance, and Big Data (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.00992

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2111.00992