The Evolving Causal Structure of Equity Risk Factors
Gabriele D'Acunto,
Paolo Bajardi,
Francesco Bonchi and
Gianmarco De Francisci Morales
Papers from arXiv.org
Abstract:
In recent years, multi-factor strategies have gained increasing popularity in the financial industry, as they allow investors to have a better understanding of the risk drivers underlying their portfolios. Moreover, such strategies promise to promote diversification and thus limit losses in times of financial turmoil. However, recent studies have reported a significant level of redundancy between these factors, which might enhance risk contagion among multi-factor portfolios during financial crises. Therefore, it is of fundamental importance to better understand the relationships among factors. Empowered by recent advances in causal structure learning methods, this paper presents a study of the causal structure of financial risk factors and its evolution over time. In particular, the data we analyze covers 11 risk factors concerning the US equity market, spanning a period of 29 years at daily frequency. Our results show a statistically significant sparsifying trend of the underlying causal structure. However, this trend breaks down during periods of financial stress, in which we can observe a densification of the causal network driven by a growth of the out-degree of the market factor node. Finally, we present a comparison with the analysis of factors cross-correlations, which further confirms the importance of causal analysis for gaining deeper insights in the dynamics of the factor system, particularly during economic downturns. Our findings are especially significant from a risk-management perspective. They link the evolution of the causal structure of equity risk factors with market volatility and a worsening macroeconomic environment, and show that, in times of financial crisis, exposure to different factors boils down to exposure to the market risk factor.
Date: 2021-11
New Economics Papers: this item is included in nep-cwa and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in ACM International Conference on AI in Finance, 2021
Downloads: (external link)
http://arxiv.org/pdf/2111.05072 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.05072
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().