Bounding Treatment Effects by Pooling Limited Information across Observations
Sokbae (Simon) Lee and
Martin Weidner
Papers from arXiv.org
Abstract:
We provide novel bounds on average treatment effects (on the treated) that are valid under an unconfoundedness assumption. Our bounds are designed to be robust in challenging situations, for example, when the conditioning variables take on a large number of different values in the observed sample, or when the overlap condition is violated. This robustness is achieved by only using limited "pooling" of information across observations. Namely, the bounds are constructed as sample averages over functions of the observed outcomes such that the contribution of each outcome only depends on the treatment status of a limited number of observations. No information pooling across observations leads to so-called "Manski bounds", while unlimited information pooling leads to standard inverse propensity score weighting. We explore the intermediate range between these two extremes and provide corresponding inference methods. We show in Monte Carlo experiments and through an empirical application that our bounds are indeed robust and informative in practice.
Date: 2021-11, Revised 2023-12
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2111.05243 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.05243
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().