EconPapers    
Economics at your fingertips  
 

Dynamic Network Quantile Regression Model

Xiu Xu, Weining Wang, Yongcheol Shin and Chaowen Zheng

Papers from arXiv.org

Abstract: We propose a dynamic network quantile regression model to investigate the quantile connectedness using a predetermined network information. We extend the existing network quantile autoregression model of Zhu et al. (2019b) by explicitly allowing the contemporaneous network effects and controlling for the common factors across quantiles. To cope with the endogeneity issue due to simultaneous network spillovers, we adopt the instrumental variable quantile regression (IVQR) estimation and derive the consistency and asymptotic normality of the IVQR estimator using the near epoch dependence property of the network process. Via Monte Carlo simulations, we confirm the satisfactory performance of the IVQR estimator across different quantiles under the different network structures. Finally, we demonstrate the usefulness of our proposed approach with an application to the dataset on the stocks traded in NYSE and NASDAQ in 2016.

Date: 2021-11
New Economics Papers: this item is included in nep-ecm and nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2111.07633 Latest version (application/pdf)

Related works:
Journal Article: Dynamic Network Quantile Regression Model (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.07633

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2111.07633