EconPapers    
Economics at your fingertips  
 

A Universal End-to-End Approach to Portfolio Optimization via Deep Learning

Chao Zhang, Zihao Zhang, Mihai Cucuringu and Stefan Zohren

Papers from arXiv.org

Abstract: We propose a universal end-to-end framework for portfolio optimization where asset distributions are directly obtained. The designed framework circumvents the traditional forecasting step and avoids the estimation of the covariance matrix, lifting the bottleneck for generalizing to a large amount of instruments. Our framework has the flexibility of optimizing various objective functions including Sharpe ratio, mean-variance trade-off etc. Further, we allow for short selling and study several constraints attached to objective functions. In particular, we consider cardinality, maximum position for individual instrument and leverage. These constraints are formulated into objective functions by utilizing several neural layers and gradient ascent can be adopted for optimization. To ensure the robustness of our framework, we test our methods on two datasets. Firstly, we look at a synthetic dataset where we demonstrate that weights obtained from our end-to-end approach are better than classical predictive methods. Secondly, we apply our framework on a real-life dataset with historical observations of hundreds of instruments with a testing period of more than 20 years.

Date: 2021-11
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/2111.09170 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.09170

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2111.09170