Pricing S&P 500 Index Options with L\'evy Jumps
Bin Xie,
Weiping Li and
Nan Liang
Papers from arXiv.org
Abstract:
We analyze various jumps for Heston model, non-IID model and three L\'evy jump models for S&P 500 index options. The L\'evy jump for the S&P 500 index options is inevitable from empirical studies. We estimate parameters from in-sample pricing through SSE for the BS, SV, SVJ, non-IID and L\'evy (GH, NIG, CGMY) models by the method of Bakshi et al. (1997), and utilize them for out-of-sample pricing and compare these models. The sensitivities of the call option pricing for the L\'evy models with respect to parameters are presented. Empirically, we show that the NIG model, SV and SVJ models with estimated volatilities outperform other models for both in-sample and out-of-sample periods. Using the in-sample optimized parameters, we find that the NIG model has the least SSE and outperforms the rest models on one-day prediction.
Date: 2021-11, Revised 2021-11
New Economics Papers: this item is included in nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2111.10033 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.10033
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).