EconPapers    
Economics at your fingertips  
 

Interactive Effects Panel Data Models with General Factors and Regressors

Bin Peng (), Liangjun Su (), Joakim Westerlund and Yanrong Yang

Papers from arXiv.org

Abstract: This paper considers a model with general regressors and unobservable factors. An estimator based on iterated principal components is proposed, which is shown to be not only asymptotically normal and oracle efficient, but under certain conditions also free of the otherwise so common asymptotic incidental parameters bias. Interestingly, the conditions required to achieve unbiasedness become weaker the stronger the trends in the factors, and if the trending is strong enough unbiasedness comes at no cost at all. In particular, the approach does not require any knowledge of how many factors there are, or whether they are deterministic or stochastic. The order of integration of the factors is also treated as unknown, as is the order of integration of the regressors, which means that there is no need to pre-test for unit roots, or to decide on which deterministic terms to include in the model.

Date: 2021-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2111.11506 Latest version (application/pdf)

Related works:
Working Paper: Interactive-effects panel-data models with general factors and regressors (2023) Downloads
Working Paper: Interactive Effects Panel Data Models with General Factors and Regressors (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.11506

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-24
Handle: RePEc:arx:papers:2111.11506