Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update
Georgios Piliouras,
Ryann Sim and
Stratis Skoulakis
Papers from arXiv.org
Abstract:
In this paper, we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU) for regret minimization in general games. CMWU effectively corresponds to the standard MWU algorithm but where all agents, when updating their mixed strategies, use the payoff profiles based on tomorrow's behavior, i.e. the agents are clairvoyant. CMWU achieves constant regret of $\ln(m)/\eta$ in all normal-form games with m actions and fixed step-sizes $\eta$. Although CMWU encodes in its definition a fixed point computation, which in principle could result in dynamics that are neither computationally efficient nor uncoupled, we show that both of these issues can be largely circumvented. Specifically, as long as the step-size $\eta$ is upper bounded by $\frac{1}{(n-1)V}$, where $n$ is the number of agents and $[0,V]$ is the payoff range, then the CMWU updates can be computed linearly fast via a contraction map. This implementation results in an uncoupled online learning dynamic that admits a $O (\log T)$-sparse sub-sequence where each agent experiences at most $O(nV\log m)$ regret. This implies that the CMWU dynamics converge with rate $O(nV \log m \log T / T)$ to a \textit{Coarse Correlated Equilibrium}. The latter improves on the current state-of-the-art convergence rate of \textit{uncoupled online learning dynamics} \cite{daskalakis2021near,anagnostides2021near}.
Date: 2021-11, Revised 2022-06
New Economics Papers: this item is included in nep-gth, nep-ore and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/2111.14737 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.14737
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().