EconPapers    
Economics at your fingertips  
 

Prediction of Fund Net Value Based on ARIMA-LSTM Hybrid Model

Peng Zhou and Fangyi Li

Papers from arXiv.org

Abstract: The net value of the fund is affected by performance and market, and the researchers try to quantify these effects to predict the future net value by establishing different models. The current prediction models usually can only reflect the linear variation law, poorly handled or selectively ignore their nonlinear characteristics, so the prediction results are usually less accurate. This paper uses a fund prediction method based on the ARIMA-LSTM hybrid model. After preprocessing the historical data, the first filter out the linear data characteristics with the ARIMA model, then pass the data to the LSTM model to extract the nonlinear characteristic by residual, and finally superposition the respective prediction values of the two models to obtain the prediction results of the hybrid model. Empirically shows that the methods in the paper are more accurate and applicable than traditional fund prediction methods.

Date: 2021-11
New Economics Papers: this item is included in nep-fmk
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2111.15355 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2111.15355

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2111.15355