Structural Sieves
Konrad Menzel
Papers from arXiv.org
Abstract:
This paper explores the use of deep neural networks for semiparametric estimation of economic models of maximizing behavior in production or discrete choice. We argue that certain deep networks are particularly well suited as a nonparametric sieve to approximate regression functions that result from nonlinear latent variable models of continuous or discrete optimization. Multi-stage models of this type will typically generate rich interaction effects between regressors ("inputs") in the regression function so that there may be no plausible separability restrictions on the "reduced-form" mapping form inputs to outputs to alleviate the curse of dimensionality. Rather, economic shape, sparsity, or separability restrictions either at a global level or intermediate stages are usually stated in terms of the latent variable model. We show that restrictions of this kind are imposed in a more straightforward manner if a sufficiently flexible version of the latent variable model is in fact used to approximate the unknown regression function.
Date: 2021-12, Revised 2022-04
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2112.01377 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.01377
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().