EconPapers    
Economics at your fingertips  
 

Optimal order execution under price impact: A hybrid model

Marina Di Giacinto, Claudio Tebaldi and Tai-Ho Wang

Papers from arXiv.org

Abstract: In this paper we explore optimal liquidation in a market populated by a number of heterogeneous market makers that have limited inventory-carrying and risk-bearing capacity. We derive a reduced form model for the dynamic of their aggregated inventory considering a proper scaling limit. The resulting price impact profile is shown to depend on the characteristics and relative importance of their inventories. The model is flexible enough to reproduce the empirically documented power law behavior of the price impact function. For any choice of the market makers characteristics, optimal execution within this modeling approach can be recast as a linear-quadratic stochastic control problem in which the value function and the associated optimal trading rate can be obtained semi-explicitly subject to solving a differential matrix Riccati equation. Numerical simulations are conducted to illustrate the performance of the resulting optimal liquidation strategy in relation to standard benchmarks. Remarkably, they show that the increase in performance is determined by a substantial reduction of higher order moment risk.

Date: 2021-12, Revised 2022-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2112.02228 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.02228

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2112.02228