Matching for causal effects via multimarginal unbalanced optimal transport
Florian Gunsilius and
Yuliang Xu
Papers from arXiv.org
Abstract:
Matching on covariates is a well-established framework for estimating causal effects in observational studies. The principal challenge stems from the often high-dimensional structure of the problem. Many methods have been introduced to address this, with different advantages and drawbacks in computational and statistical performance as well as interpretability. This article introduces a natural optimal matching method based on multimarginal unbalanced optimal transport that possesses many useful properties in this regard. It provides interpretable weights based on the distance of matched individuals, can be efficiently implemented via the iterative proportional fitting procedure, and can match several treatment arms simultaneously. Importantly, the proposed method only selects good matches from either group, hence is competitive with the classical k-nearest neighbors approach in terms of bias and variance in finite samples. Moreover, we prove a central limit theorem for the empirical process of the potential functions of the optimal coupling in the unbalanced optimal transport problem with a fixed penalty term. This implies a parametric rate of convergence of the empirically obtained weights to the optimal weights in the population for a fixed penalty term.
Date: 2021-12, Revised 2022-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2112.04398 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.04398
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().