Efficient counterfactual estimation in semiparametric discrete choice models: a note on Chiong, Hsieh, and Shum (2017)
Grigory Franguridi
Papers from arXiv.org
Abstract:
I suggest an enhancement of the procedure of Chiong, Hsieh, and Shum (2017) for calculating bounds on counterfactual demand in semiparametric discrete choice models. Their algorithm relies on a system of inequalities indexed by cycles of a large number $M$ of observed markets and hence seems to require computationally infeasible enumeration of all such cycles. I show that such enumeration is unnecessary because solving the "fully efficient" inequality system exploiting cycles of all possible lengths $K=1,\dots,M$ can be reduced to finding the length of the shortest path between every pair of vertices in a complete bidirected weighted graph on $M$ vertices. The latter problem can be solved using the Floyd--Warshall algorithm with computational complexity $O\left(M^3\right)$, which takes only seconds to run even for thousands of markets. Monte Carlo simulations illustrate the efficiency gain from using cycles of all lengths, which turns out to be positive, but small.
Date: 2021-12
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2112.04637 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.04637
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().