Truthful Cake Sharing
Xiaohui Bei,
Xinhang Lu and
Warut Suksompong
Papers from arXiv.org
Abstract:
The classic cake cutting problem concerns the fair allocation of a heterogeneous resource among interested agents. In this paper, we study a public goods variant of the problem, where instead of competing with one another for the cake, the agents all share the same subset of the cake which must be chosen subject to a length constraint. We focus on the design of truthful and fair mechanisms in the presence of strategic agents who have piecewise uniform utilities over the cake. On the one hand, we show that the leximin solution is truthful and moreover maximizes an egalitarian welfare measure among all truthful and position oblivious mechanisms. On the other hand, we demonstrate that the maximum Nash welfare solution is truthful for two agents but not in general. Our results assume that mechanisms can block each agent from accessing parts that the agent does not claim to desire; we provide an impossibility result when blocking is not allowed.
Date: 2021-12, Revised 2022-02
New Economics Papers: this item is included in nep-des, nep-gth, nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/2112.05632 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.05632
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().