Uniform Convergence Results for the Local Linear Regression Estimation of the Conditional Distribution
Haitian Xie
Papers from arXiv.org
Abstract:
This paper examines the local linear regression (LLR) estimate of the conditional distribution function $F(y|x)$. We derive three uniform convergence results: the uniform bias expansion, the uniform convergence rate, and the uniform asymptotic linear representation. The uniformity in the above results is with respect to both $x$ and $y$ and therefore has not previously been addressed in the literature on local polynomial regression. Such uniform convergence results are especially useful when the conditional distribution estimator is the first stage of a semiparametric estimator. We demonstrate the usefulness of these uniform results with two examples: the stochastic equicontinuity condition in $y$, and the estimation of the integrated conditional distribution function.
Date: 2021-12, Revised 2023-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2112.08546 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.08546
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().