Algorithm Design: A Fairness-Accuracy Frontier
Annie Liang,
Jay Lu,
Xiaosheng Mu and
Kyohei Okumura
Papers from arXiv.org
Abstract:
Algorithm designers increasingly optimize not only for accuracy, but also for the fairness of the algorithm across pre-defined groups. We study the tradeoff between fairness and accuracy for any given set of inputs to the algorithm. We propose and characterize a fairness-accuracy frontier, which consists of the optimal points across a broad range of preferences over fairness and accuracy. Our results identify a simple property of the inputs, group-balance, which qualitatively determines the shape of the frontier. We further study an information-design problem where the designer flexibly regulates the inputs (e.g., by coarsening an input or banning its use) but the algorithm is chosen by another agent. Whether it is optimal to ban an input generally depends on the designer's preferences. But when inputs are group-balanced, then excluding group identity is strictly suboptimal for all designers, and when the designer has access to group identity, then it is strictly suboptimal to exclude any informative input.
Date: 2021-12, Revised 2024-05
New Economics Papers: this item is included in nep-cmp and nep-reg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2112.09975 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.09975
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().