Principal agent mean field games in REC markets
Dena Firoozi,
Arvind V Shrivats and
Sebastian Jaimungal
Papers from arXiv.org
Abstract:
Principal agent games are a growing area of research which focuses on the optimal behaviour of a principal and an agent, with the former contracting work from the latter, in return for providing a monetary award. While this field canonically considers a single agent, the situation where multiple agents, or even an infinite amount of agents are contracted by a principal are growing in prominence and pose interesting and realistic problems. Here, agents form a Nash equilibrium among themselves, and a Stackelberg equilibrium between themselves as a collective and the principal. We apply this framework to the problem of implementing Renewable Energy Certificate (REC) markets, where the principal requires regulated firms (power generators) to pay a non-compliance penalty which is inversely proportional to the amount of RECs they have. RECs can be obtained by generating electricity from clean sources or purchasing on the market. The agents react to this penalty and optimize their behaviours to navigate the system at minimum cost. In the agents' model we incorporate market clearing as well as agent heterogeneity. For a given market design, we find the Nash equilibrium among agents using techniques from mean field games. We then use techniques from extended McKean-Vlasov control problems to solve the principal (regulators) problem, who aim to choose the penalty function in such a way that balances environmental and revenue impacts optimally. We find through these techniques that the optimal penalty function is linear in the agents' state, suggesting the optimal emissions regulation market is more akin to a tax or rebate, regardless of the principal's utility function.
Date: 2021-12, Revised 2022-06
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/2112.11963 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.11963
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().