Long Story Short: Omitted Variable Bias in Causal Machine Learning
Victor Chernozhukov,
Carlos Cinelli (),
Whitney Newey,
Amit Sharma and
Vasilis Syrgkanis
Papers from arXiv.org
Abstract:
We develop a general theory of omitted variable bias for a wide range of common causal parameters, including (but not limited to) averages of potential outcomes, average treatment effects, average causal derivatives, and policy effects from covariate shifts. Our theory applies to nonparametric models, while naturally allowing for (semi-)parametric restrictions (such as partial linearity) when such assumptions are made. We show how simple plausibility judgments on the maximum explanatory power of omitted variables are sufficient to bound the magnitude of the bias, thus facilitating sensitivity analysis in otherwise complex, nonlinear models. Finally, we provide flexible and efficient statistical inference methods for the bounds, which can leverage modern machine learning algorithms for estimation. These results allow empirical researchers to perform sensitivity analyses in a flexible class of machine-learned causal models using very simple, and interpretable, tools. We demonstrate the utility of our approach with two empirical examples.
Date: 2021-12, Revised 2024-05
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2112.13398 Latest version (application/pdf)
Related works:
Working Paper: Long Story Short: Omitted Variable Bias in Causal Machine Learning (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.13398
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().