EconPapers    
Economics at your fingertips  
 

Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects

Isaac Meza and Rahul Singh

Papers from arXiv.org

Abstract: Several causal parameters in short panel data models are scalar summaries of a function called a nested nonparametric instrumental variable regression (nested NPIV). Examples include long term, mediated, and time varying treatment effects identified using proxy variables. However, it appears that no prior estimators or guarantees for nested NPIV exist, preventing flexible estimation and inference for these causal parameters. A major challenge is compounding ill posedness due to the nested inverse problems. We analyze adversarial estimators of nested NPIV, and provide sufficient conditions for efficient inference on the causal parameter. Our nonasymptotic analysis has three salient features: (i) introducing techniques that limit how ill posedness compounds; (ii) accommodating neural networks, random forests, and reproducing kernel Hilbert spaces; and (iii) extending to causal functions, e.g. long term heterogeneous treatment effects. We measure long term heterogeneous treatment effects of Project STAR and mediated proximal treatment effects of the Job Corps.

Date: 2021-12, Revised 2024-03
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2112.14249 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.14249

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2112.14249