EconPapers    
Economics at your fingertips  
 

Dynamic growth-optimum portfolio choice under risk control

Pengyu Wei and Zuo Quan Xu

Papers from arXiv.org

Abstract: This paper studies a mean-risk portfolio choice problem for log-returns in a continuous-time, complete market. This is a growth-optimal problem with risk control. The risk of log-returns is measured by weighted Value-at-Risk (WVaR), which is a generalization of Value-at-Risk (VaR) and Expected Shortfall (ES). We characterize the optimal terminal wealth up to the concave envelope of a certain function, and obtain analytical expressions for the optimal wealth and portfolio policy when the risk is measured by VaR or ES. In addition, we find that the efficient frontier is a concave curve that connects the minimum-risk portfolio with the growth optimal portfolio, as opposed to the vertical line when WVaR is used on terminal wealth. Our results advocate the use of mean-WVaR criterion for log-returns instead of terminal wealth in dynamic portfolio choice.

Date: 2021-12
New Economics Papers: this item is included in nep-cwa and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2112.14451 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.14451

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2112.14451