EconPapers    
Economics at your fingertips  
 

Volatility of volatility estimation: central limit theorems for the Fourier transform estimator and empirical study of the daily time series stylized facts

Giacomo Toscano, Giulia Livieri, Maria Elvira Mancino and Stefano Marmi

Papers from arXiv.org

Abstract: We study the asymptotic normality of two feasible estimators of the integrated volatility of volatility based on the Fourier methodology, which does not require the pre-estimation of the spot volatility. We show that the bias-corrected estimator reaches the optimal rate $n^{1/4}$, while the estimator without bias-correction has a slower convergence rate and a smaller asymptotic variance. Additionally, we provide simulation results that support the theoretical asymptotic distribution of the rate-efficient estimator and show the accuracy of the latter in comparison with a rate-optimal estimator based on the pre-estimation of the spot volatility. Finally, using the rate-optimal Fourier estimator, we reconstruct the time series of the daily volatility of volatility of the S\&P500 and EUROSTOXX50 indices over long samples and provide novel insight into the existence of stylized facts about the volatility of volatility dynamics.

Date: 2021-12, Revised 2022-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://arxiv.org/pdf/2112.14529 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2112.14529

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2112.14529