EconPapers    
Economics at your fingertips  
 

Technology Mapping Using WebAI: The Case of 3D Printing

Julian Schwierzy, Robert Dehghan, Sebastian Schmidt, Elisa Rodepeter, Andreas Stoemmer, Kaan Uctum, Jan Kinne, David Lenz and Hanna Hottenrott

Papers from arXiv.org

Abstract: The diffusion of new technologies is crucial for the realization of social and economic returns to innovation. Tracking and mapping technology diffusion is, however, typically limited by the extent to which we can observe technology adoption. This study uses website texts to train a multilingual language model ensemble to map technology diffusion for the case of 3D printing. The study identifies relevant actors and their roles in the diffusion process. The results show that besides manufacturers, service provider, retailers, and information providers play an important role. The geographic distribution of adoption intensity suggests that regional 3D-printing intensity is driven by experienced lead users and the presence of technical universities. The overall adoption intensity varies by sector and firm size. These patterns indicate that the approach of using webAI provides a useful and novel tool for technology mapping which adds to existing measures based on patents or survey data.

Date: 2022-01
New Economics Papers: this item is included in nep-tid
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2201.01125 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2201.01125

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2201.01125