EconPapers    
Economics at your fingertips  
 

Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning

Michael Curry, Alexander Trott, Soham Phade, Yu Bai and Stephan Zheng

Papers from arXiv.org

Abstract: Real economies can be modeled as a sequential imperfect-information game with many heterogeneous agents, such as consumers, firms, and governments. Dynamic general equilibrium (DGE) models are often used for macroeconomic analysis in this setting. However, finding general equilibria is challenging using existing theoretical or computational methods, especially when using microfoundations to model individual agents. Here, we show how to use deep multi-agent reinforcement learning (MARL) to find $\epsilon$-meta-equilibria over agent types in microfounded DGE models. Whereas standard MARL fails to learn non-trivial solutions, our structured learning curricula enable stable convergence to meaningful solutions. Conceptually, our approach is more flexible and does not need unrealistic assumptions, e.g., continuous market clearing, that are commonly used for analytical tractability. Furthermore, our end-to-end GPU implementation enables fast real-time convergence with a large number of RL economic agents. We showcase our approach in open and closed real-business-cycle (RBC) models with 100 worker-consumers, 10 firms, and a social planner who taxes and redistributes. We validate the learned solutions are $\epsilon$-meta-equilibria through best-response analyses, show that they align with economic intuitions, and show our approach can learn a spectrum of qualitatively distinct $\epsilon$-meta-equilibria in open RBC models. As such, we show that hardware-accelerated MARL is a promising framework for modeling the complexity of economies based on microfoundations.

Date: 2022-01, Revised 2022-02
New Economics Papers: this item is included in nep-big, nep-cmp, nep-dge and nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://arxiv.org/pdf/2201.01163 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2201.01163

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2201.01163