EconPapers    
Economics at your fingertips  
 

DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities

Shuo Sun, Wanqi Xue, Rundong Wang, Xu He, Junlei Zhu, Jian Li and Bo An

Papers from arXiv.org

Abstract: Reinforcement learning (RL) techniques have shown great success in many challenging quantitative trading tasks, such as portfolio management and algorithmic trading. Especially, intraday trading is one of the most profitable and risky tasks because of the intraday behaviors of the financial market that reflect billions of rapidly fluctuating capitals. However, a vast majority of existing RL methods focus on the relatively low frequency trading scenarios (e.g., day-level) and fail to capture the fleeting intraday investment opportunities due to two major challenges: 1) how to effectively train profitable RL agents for intraday investment decision-making, which involves high-dimensional fine-grained action space; 2) how to learn meaningful multi-modality market representation to understand the intraday behaviors of the financial market at tick-level. Motivated by the efficient workflow of professional human intraday traders, we propose DeepScalper, a deep reinforcement learning framework for intraday trading to tackle the above challenges. Specifically, DeepScalper includes four components: 1) a dueling Q-network with action branching to deal with the large action space of intraday trading for efficient RL optimization; 2) a novel reward function with a hindsight bonus to encourage RL agents making trading decisions with a long-term horizon of the entire trading day; 3) an encoder-decoder architecture to learn multi-modality temporal market embedding, which incorporates both macro-level and micro-level market information; 4) a risk-aware auxiliary task to maintain a striking balance between maximizing profit and minimizing risk. Through extensive experiments on real-world market data spanning over three years on six financial futures, we demonstrate that DeepScalper significantly outperforms many state-of-the-art baselines in terms of four financial criteria.

Date: 2021-12, Revised 2022-08
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cwa, nep-mst and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2201.09058 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2201.09058

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2201.09058