New Characterizations of Core Imputations of Matching and $b$-Matching Games
Vijay V. Vazirani
Papers from arXiv.org
Abstract:
We give new characterizations of core imputations for the following games: * The assignment game. * Concurrent games, i.e., general graph matching games having non-empty core. * The unconstrained bipartite $b$-matching game (edges can be matched multiple times). * The constrained bipartite $b$-matching game (edges can be matched at most once). The classic paper of Shapley and Shubik \cite{Shapley1971assignment} showed that core imputations of the assignment game are precisely optimal solutions to the dual of the LP-relaxation of the game. Building on this, Deng et al. \cite{Deng1999algorithms} gave a general framework which yields analogous characterizations for several fundamental combinatorial games. Interestingly enough, their framework does not apply to the last two games stated above. In turn, we show that some of the core imputations of these games correspond to optimal dual solutions and others do not. This leads to the tantalizing question of understanding the origins of the latter. We also present new characterizations of the profits accrued by agents and teams in core imputations of the first two games. Our characterization for the first game is stronger than that for the second; the underlying reason is that the characterization of vertices of the Birkhoff polytope is stronger than that of the Balinski polytope.
Date: 2022-02, Revised 2022-12
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2202.00619 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.00619
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().