EconPapers    
Economics at your fingertips  
 

Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis

Carlo Drago and Andrea Scozzari

Papers from arXiv.org

Abstract: Modeling and forecasting of dynamically varying covariances have received much attention in the literature. The two most widely used conditional covariances and correlations models are BEKK and DCC. In this paper, we advance a new method to introduce targeting in both models to estimate matrices associated with financial time series. Our approach is based on specific groups of highly correlated assets in a financial market, and these relationships remain unaltered over time. Based on the estimated parameters, we evaluate our targeting method on simulated series by referring to two well-known loss functions introduced in the literature and Network analysis. We find all the maximal cliques in correlation graphs to evaluate the effectiveness of our method. Results from an empirical case study are encouraging, mainly when the number of assets is not large.

Date: 2022-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2202.02197 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.02197

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-01
Handle: RePEc:arx:papers:2202.02197