EconPapers    
Economics at your fingertips  
 

The Transfer Performance of Economic Models

Isaiah Andrews, Drew Fudenberg, Lihua Lei, Annie Liang and Chaofeng Wu

Papers from arXiv.org

Abstract: Economists often estimate models using data from a particular domain, e.g. estimating risk preferences in a particular subject pool or for a specific class of lotteries. Whether a model's predictions extrapolate well across domains depends on whether the estimated model has captured generalizable structure. We provide a tractable formulation for this "out-of-domain" prediction problem and define the transfer error of a model based on how well it performs on data from a new domain. We derive finite-sample forecast intervals that are guaranteed to cover realized transfer errors with a user-selected probability when domains are iid, and use these intervals to compare the transferability of economic models and black box algorithms for predicting certainty equivalents. We find that in this application, the black box algorithms we consider outperform standard economic models when estimated and tested on data from the same domain, but the economic models generalize across domains better than the black-box algorithms do.

Date: 2022-02, Revised 2025-03
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cwa and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2202.04796 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.04796

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2202.04796